.. simple_examples Simple Examples =============== RocketCEA always begins with an import statement and an instance of a CEA_obj:: from rocketcea.cea_obj import CEA_Obj C = CEA_Obj( oxName='LOX', fuelName='LH2') If the above is done at a command prompt, we can query the CEA_Obj as shown below:: >>> from rocketcea.cea_obj import CEA_Obj >>> C = CEA_Obj( oxName='LOX', fuelName='LH2') >>> C.get_Isp(Pc=100.0, MR=1.0, eps=40.0) 374.3036176557629 >>> C.get_Isp(Pc=100.0, MR=6.0, eps=40.0) 448.190232998362 Note that the number of significant figures in the Isp above are much higher than in the standard CEA output. While there is likely no physical significance to this, it can sometimes be useful numerically in computations that take derivatives of Isp with respect to a design variable. (for example optimizers.) Simple SI Units Example ----------------------- By importing CEA_Obj from **cea_obj_w_units** instead of **cea_obj**, all of the I/O units can be changed from the default units (i.e. ft, lbm, BTU, degR, etc.). The above example in English units is recreated below with SI units(chamber pressure input in MPa). Notice that CEA_Obj is created with **pressure_units='MPa'** as an input parameter. (For ease of comparison, the 100 psia input value of Pc from above is converted to MPa as 100/145.037738.):: >>> from rocketcea.cea_obj_w_units import CEA_Obj >>> C = CEA_Obj( oxName='LOX', fuelName='LH2', pressure_units='MPa') >>> C.get_Isp(Pc=100.0 /145.037738, MR=1.0, eps=40.0) 374.30361765576265 >>> C.get_Isp(Pc=100.0 /145.037738, MR=6.0, eps=40.0) 448.1902329983554 All of the units may be specified by changing the CEA_Obj inputs from the defaults given below, to the desired units shown as comments. Simply include an input parameter in the creation of CEA_Obj as shown above with pressure_units.:: isp_units = 'sec', # N-s/kg, m/s, km/s cstar_units = 'ft/sec', # m/s pressure_units = 'psia', # MPa, KPa, Pa, Bar, Atm, Torr temperature_units = 'degR', # K, C, F sonic_velocity_units = 'ft/sec', # m/s enthalpy_units = 'BTU/lbm', # J/g, kJ/kg, J/kg, kcal/kg, cal/g density_units = 'lbm/cuft', # g/cc, sg, kg/m^3 specific_heat_units = 'BTU/lbm degR' # kJ/kg-K, cal/g-C, J/kg-K viscosity_units = 'millipoise' # lbf-sec/sqin, lbf-sec/sqft, lbm/ft-sec, poise, centipoise thermal_cond_units = 'mcal/cm-K-s' # millical/cm-degK-sec, BTU/hr-ft-degF, BTU/s-in-degF, # cal/s-cm-degC, W/cm-degC .. note:: If the units you desire are not shown above, your units may be added by importing **add_user_units** from **rocketcea.units** and calling it prior to creating CEA_Obj. For example MPa was added with the line. add_user_units('psia', 'MPa', 0.00689475729) # multiplier = user units / default units N2O4/MMH Performance -------------------- Successive queries of the CEA_Obj can be made to create tables of information. The script below will make a table of N2O4/MMH performance data. .. literalinclude:: ./_static/example_scripts/perf_table.py The resulting table is shown below:: Pc(psia) AreaRatio MixtureRatio IspVac(sec) Cstar(ft/sec) Tc(degR) MolWt gamma 250.0 50.0 1.0 306.1 5378.5 4243.4 16.73 1.2539 250.0 50.0 1.1 311.6 5476.1 4532.8 17.39 1.2377 250.0 50.0 1.2 316.7 5554.9 4791.1 18.03 1.2216 250.0 50.0 1.3 321.4 5617.1 5018.0 18.63 1.2062 250.0 50.0 1.4 325.6 5664.5 5214.0 19.21 1.1918 250.0 50.0 1.5 329.3 5698.4 5379.7 19.75 1.1786 250.0 50.0 1.6 332.4 5719.6 5515.7 20.26 1.1668 250.0 50.0 1.7 335.1 5728.7 5623.4 20.74 1.1569 250.0 50.0 1.8 337.4 5726.4 5704.9 21.19 1.1489 250.0 50.0 1.9 339.3 5713.9 5763.2 21.60 1.1428 250.0 50.0 2.0 340.8 5692.9 5801.9 21.99 1.1384 250.0 50.0 2.1 341.9 5665.4 5824.6 22.34 1.1353 250.0 50.0 2.2 342.7 5633.5 5834.8 22.67 1.1333 250.0 50.0 2.3 343.0 5598.6 5835.2 22.98 1.1319 250.0 50.0 2.4 342.8 5562.1 5828.0 23.27 1.1311 250.0 50.0 2.5 341.6 5524.8 5814.9 23.54 1.1307 250.0 50.0 2.6 338.7 5487.2 5797.4 23.79 1.1305 250.0 50.0 2.7 335.5 5449.7 5776.3 24.03 1.1306 250.0 50.0 2.8 332.4 5412.5 5752.5 24.25 1.1308 250.0 50.0 2.9 329.3 5375.8 5726.4 24.47 1.1311 LOX/LH2 Delta V --------------- Conducting an analysis with RocketCEA is much easier than the standard approach to running CEA and reviewing the pages of CEA output (as we did in the LOX/LH2 example from :ref:`Standard Examples `) We can query the CEA_Obj instance repeatedly for specific information, as opposed to simply printing a page of CEA output. If we wanted to run some deltaV calculations on a LOX/LH2 stage to see what impact changing the engine's area ratio would have, we might do the following. .. literalinclude:: ./_static/example_scripts/deltav_calc.py The script above calls RocketCEA for a number of area ratio values to get ideal vacuum Isp. An efficiency is applied to that ideal Isp to arrive at a delivered Isp. The delivered Isp is then used to calculate a stage deltaV. The script gives the following output:: Pc(psia) AreaRatio MixtureRatio IspVac(sec) IspDel(sec) deltaV(ft/sec) 475.0 84.0 5.88 464.9 450.5 21392.5 475.0 100.0 5.88 467.7 453.2 21518.6 475.0 150.0 5.88 473.5 458.8 21785.7 475.0 200.0 5.88 477.1 462.3 21954.9 475.0 250.0 5.88 479.8 464.9 22075.5 475.0 280.0 5.88 481.0 466.1 22133.4